Computing the Characteristics of a Subsegment of a Digital Straight Line in Logarithmic Time

Mouhammad Said, Jacques-Olivier Lachaud
\{Mouhammad.Said, Jacques-Olivier.Lachaud\}@univ-savoie.fr, University of Savoie, France
S is included in one pattern of D

Updates in $O(1)$ the slope of the DSL D according to the change of the two lower leaning points.

3 Correctness and computational complexity
Proposition 1 For any DSL D such that $A, B \in D$, Algorithm ReversedSmartDSS computes the characteristics of the segment $S=[A B]$ included in D.
Proposition 2 Algorithm ReversedSmartDSS takes $O\left(n-n^{\prime}\right)$ time complexity, where n is the depth of the input DSL D with slope $\frac{\alpha}{\beta}=\left[u_{0}, u_{1}, \cdots, u_{n}\right]$ and n^{\prime} is the depth of the output DSS S with slope $\frac{a}{b}=\left[u_{0}, u_{1}, \cdots, u_{n^{\prime}}\right]$

Timing measures: Computation times of the (h, v)-covering of various digital shapes with our proposed approach.

Shape	Fower			Circle			Polygon											
\# points	${ }_{\text {cher }}^{6794}$			${ }_{574}^{1004}$			${ }_{1536}$											
\# segments																		
h, v	2	4	10	2	4	10	2	4	10									
\# points (h, v)	3374	16870	6750	8000	4000	1600	7676	3840	1532									
Smatt DSS																		
\# point tested	1935	11254	4367	5413	2977	1019	782	667	527									
$t^{\text {a }}$																		

4 Conclusion
We have presented a novel fast DSS recognition algorithm with guaranteed logarithmic complexity, i the special case where a DSL container is known. The algorithm principle is to move in a bottom-up this algorithm to efficiently compute the exact multiscale covering of a digital contour (Table Timing) Our algorithms are sensitive to the depth of the input DSL and output DSS, and are clearly sublinear References
[1] F. de Vieilleville and J.O. Lachaud. Revisiting digital straight segment recognition. In A. Kuba, K. Palágyi, and L.G,
Nyuil, editors, Proc. Int. Conf. Discrete Geometry for Computer Imagery (DGCl'2006), Szeged. Hungary, volume 4245
 nger, October 2006
[2] I. Debled-Rennesson and J.-P. Reveilles. A A linear algorithm for seg
of Pattern Recognition and AAtificial Intelligence, $9: 335-662,1995$.
[3] M. Said, J.-. L. Lachaud, and F. Feschet. Multiscale Discrete Geometry. In Proc. Interrational Conference on Discrete Geometry for Computer Imagery (DGC12009), volume 5810 of Lecture Notes in Computer Science, pages 118-131,

