Properties and Applications of the Simplified Generalized Perpendicular Bisector

Aurélie Richard, Gaëlle Largeteau-Skapin, Marc Rodríguez, Eric Andres, Laurent Fuchs, Jean Serge Dimitri Ouattara

\{arichard,glargeteau,rodriguez,andres,fuchs\}@sic.univ-poitiers.fr, jean.ouattara@univ-poitiers.fr Laboratory XLIM, SIC Department,
University of Poitiers BP 30179, UMR CNRS 6712
86962 Futuroscope Chasseneuil Cedex, France

1. What is the Simplified Generalized Perpendicular Bisector?

The Perpendicular Bisector (PB)
The PB between two points A and B is the set of points that are at equal distance of both points.

The Generalized Perpendicular Bisector (GPB) and the Simplified GPB (SGPB)

The GPB between two regions S_{1} and S_{2} is the set of the PB of every couple of points that belongs to S_{1} and S_{2}.

For computational purposes, in the GPB, the parabolic pieces have been dropped by extending the straight lines (i.e. changing the distance definition). This defines the SGPB.

2. Characterization of the points belonging to the GPB

- \mathcal{S}_{1} and \mathcal{S}_{2} : two bounded connected regions;
- $d_{i_{\text {min }}}(X)=\min _{Y \in \mathcal{S}_{i}}(d(X, Y))$;
- $d_{i_{\text {max }}}(X)=\max _{Y \in \mathcal{S}_{i}}(d(X, Y))$ where d is the usual Euclidean distance.

Every Euclidean point $X \in \mathbb{R}^{n}$ such that:

$$
\begin{equation*}
\left[d_{1_{\min }}(X), d_{1_{\max }}(X)\right] \bigcap\left[d_{2_{\min }}(X), d_{2_{\max }}(X)\right] \neq \emptyset \tag{1}
\end{equation*}
$$

belongs to the GPB of \mathcal{S}_{1} and \mathcal{S}_{2}.

3. GPB and adaptative pixels (pixels of different sizes)

Proposition The boundary of 2D-Simplified Generalized Perpendicular Bisector between two pixels $P_{1}=\left(x_{1}, y_{1}\right)$ of size λ_{1} and $P_{2}=\left(x_{2}, y_{2}\right)$ of size λ_{2} is composed of at most 10 line segments and half-lines.

4. Simplified Generalized Circumcenter (SGC)

The SGC of a set of n finite and connected regions $\mathcal{S}=\left(S_{i}\right)_{i \in[1, n]}$ is defined as the intersection of the SGPB of every two regions of the set:

$$
S G C(\mathcal{S})=\bigcap_{i, j \in[1, n], i<j}\left(S G P B\left(S_{i}, S_{j}\right)\right)
$$

Property Each point of the SGC corresponds to the center of at least one circle that intersects all the adaptive pixels.

5. Dual

Proposition The dual of a SGPB is a convex polygon of at most 8 vertices and 8 edges. At most two vertices may be at the infinite (the dual polygon edges are vertical (determination in $\mathrm{O}(1)$).

Proposition All the straight lines crossing the duals of all the SGPB of every pair of adaptative pixels P_{i} and P_{j} is the dual of the Simplified Generalized Circumcenter.

Figure: The dual of the three SGPB corresponding to three pixels of different sizes.

7. Application to noisy circle recognition

- Increasing of the size of each pixel according to a local noise estimator;
- Computation of the SGPB of each couple of pixels (with the new sizes).
\Rightarrow Intersection $=$ set of possible circle centers (the SGC.)

Figure: A Bresenham circle of radius 5 with misplaced and missing pixels.

8. Conclusion and perspectives

- Conclusion:
- Definition of the SGPB between two pixels of different sizes;
- Study of the dual of the SGPB;
- Application to exhaustive parameter estimation of noisy circles;
- Reconstruction of the noisy rotations using the SGPB.
- Perspectives:
- Link between the SGPB and other discrete bisectors.
- Investigations in higher dimension.

