Approximate Shortest Paths in Simple Polyhedra

Fajie Li^{1} and Reinhard Klette ${ }^{2}$

${ }^{1}$ College of Computer Science and Technology, Huaqiao University, Xiamen, Fujian, China
${ }^{2}$ Computer Science Department, The University of Auckland, New Zealand

email: li.fajie@hqu.edu.cn

Introduction

Minimal paths in volume images have raised interest in computer vision and image analysis (for example, [4, 5]). In medical image analysis, minimal paths were extracted in 3D images and applied to virtual endoscopy [5]. The existed approximation algorithms for 3D ESP calculations are not efficient, see, for example, [2, 6]. Recently, [1] proposes algorithms for calculating approximate ESPs amid a set of convex obstacles. For latest results related to surface ESPs, see [3]. In this paper, we apply a rubberband algorithm to present an approximate

$$
\kappa(\varepsilon) \cdot \mathcal{O}(M|V|)+\mathcal{O}(M|E|+|S|+|V| \log |V|)
$$

algorithm for ESP calculations when Π is a (type-2, see Definition 2 below) simply connected polyhedron which is not necessarily convex
The given algorithm solves approximately three NPcomplete or NP-hard 3D ESP problems in time $\kappa(\varepsilon) \cdot \mathcal{O}(k)$, where k is the number of layers in a stack, which is introduced as the problem environment below. Our algorithm has straightforward applications for ESP problems when analyzing polyhedral objects (e.g., in 3D imaging), or for 'flying' over a polyhedral terrain.

Basics

We denote by Π a simple polyhedron in the 3D Euclidean space, which is equipped with an $x y z$ Cartesian coordinate system. Let E be the set of edges of $\Pi ; V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ the set of vertices of Π. For $p \in \Pi$, let π_{p} be the plane which is incident with p and parallel to the $x y$-plane. The intersection $\pi_{p} \cap \Pi$ is a finite set of simple polygons; a singleton is considered to be a degenerate polygon.
Definition 1 A simple polygon P, being a connected component of $\pi_{p} \cap \Pi$, is called a critical polygon of Π (with respect to p).
Definition 2 We say that a simple polyhedron Π is a type-1 polyhedron iff any vertex p defines exactly one convex critical polygon. We say that a simple polyhedron Π is a type-2 polyhedron iff any vertex p defines exactly one simple critical polygon.

ESP Computation

Procedure 1 (compute a sequence of vertices of the critical polygon; see Fig. 1)
Input: Set \mathcal{F} and a vertex $v \in V$ such that π_{v} intersects Π in more than just one point.
Output: An ordered sequence of all vertices in V_{v}, which is the vertex set of the critical polygon P_{v}.

Figure 1: The labeled vertex v identifies a sequence of six vertices of the critical polygon P_{v}, defined by the intersection of plane π_{v} with the shown (Schönhardt) polyhedron.
The main ideas of the rubberband algorithm (Algorithm 1) are as follows: For a start, we randomly take a point in the closure of each critical polygon to identify an initial path from p to q. Then we enter a loop; in each iteration, we optimize locally the position of point p_{1} by moving it within its critical polygon, then of p_{2}, \ldots, and finally of p_{k}. At the end of each iteration, we check the difference between the length of the current path to that of the previous one; if it is less than a given accuracy threshold $\varepsilon>0$ then we stop. Otherwise, we go to the next iteration.

Algorithm 1 (a rubberband algorithm for type-1 polyhedra) Input: Two points p and q, a set $\left\{P_{v_{1}}^{\bullet}, P_{v_{2}}^{\bullet}, \ldots, P_{v_{k}}^{\bullet}\right\}$, where $P_{v_{i}}$ is a critical polygon of a given polyhedron Π, k vertices $v_{i} \in \partial P_{v_{i}}$ such that $p_{z}<v_{1_{z}}<\cdots<v_{k_{z}}<q_{z}$, for $i=$ $1,2, \ldots, k$, and there is no any other critical polygon of Π between p and q; given is also an accuracy constant $\varepsilon>0$. Output: The set of all vertices of an approximate shortest path which starts at p, then visits approximate optimal positions $p_{1}, p_{2}, \ldots, p_{k}$ in that order, and finally ends at q.
Algorithm 2 (a rubberband algorithm for type- 2 polyhedra)
1: For $i \in\{1,2, \ldots, k\}$, apply (e.g.) the Melkman algorithm for computing $C\left(P_{v_{i}}\right)$, the convex hull of $P_{v_{i}}$
2: Let $C\left(P_{v_{1}}^{\bullet}\right), C\left(P_{v_{2}}^{\bullet}\right), \ldots, C\left(P_{v_{k}}^{\bullet}\right), p$, and q be the input of Algorithm 1 for computing an approximate shortest route $\left\langle p, p_{1}, \ldots, p_{k}, q\right\rangle$.
3: For $i=1,2, \ldots, k-1$, find a point $q_{i} \in C\left(P_{v_{i}}^{*}\right)$ such that
$d_{e}\left(p_{i-1}, q_{i}\right)+d_{e}\left(q_{i}, p_{i+1}\right)=\min \left\{d_{e}\left(p_{i-1}, p\right)+d_{e}\left(p, p_{i+1}\right)\right.$ $\left.p \in C\left(P_{v}^{\bullet}\right)\right\}$. Update the path for each i by $p_{i}=q_{i}$.
: Let $P_{v_{1}}^{\bullet}, P_{v_{2}}^{\bullet}, \ldots, P_{v_{k}}^{\bullet}, p$ and q be the input of Algorithm 1, and points p_{i} as obtained in Step 3 are the initial vertices p_{i} in Step 1 of Algorithm 1. Continue with running Algorithm 1.
5: Return $\left\langle p, p_{1}, \ldots, p_{k-1}, p_{k}, q\right\rangle$ as provided in Step 4.

Algorithm 3 (main algorithm)

Input: Two points p and q in Π; sets \mathcal{F} and V of faces and vertices of Π, respectively.
Output: The set of all vertices of an approximate shortest path, starting at p and ending at q, and contained in Π.

1: Initialize $V^{\prime} \leftarrow\left\{v: p_{z}<v_{z}<q_{z} \wedge v \in V\right\}$.
2: Sort V^{\prime} according to the z-coordinate.
3: We obtain $V^{\prime}=\left\{v_{1}, v_{2}, \ldots, v_{k^{\prime}}\right\} \quad$ with $\quad v_{1 z} \leq v_{2 z} \leq$ $\leq v_{k^{\prime} z}$.
4: Partition V^{\prime} into pairwise disjoint subsets V_{1}, V_{2}, \ldots, and V_{k} such that
$V_{i}=\left\{v_{i 1}, v_{i 2}, \ldots, v_{i n_{i}}\right\}$, with $v_{i j_{z}}=v_{i j+1}$, for $j=$ $1,2, \ldots, n_{i}-1$, and $v_{i 1 z}<v_{i+11 z}$, for $i=1,2, \ldots, k-1$.
5: Set $u_{i} \leftarrow v_{i 1}$, where $i=1,2, \ldots, k$.
6: Set $V^{\prime \prime} \leftarrow\left\{u_{1}, u_{2}, \ldots, u_{k}\right\}$ (then we have that $u_{1 z}<$ $u_{2 z}<\ldots<u_{k z}$).
for each $u_{i} \in V^{\prime \prime}$ do
8: Apply Procedure 1 for computing $V_{u_{i}}$ (i.e., a sequence of vertices of the critical polygon $P_{u_{i}}$).
9: end for
10: Set $\mathcal{F}_{\text {step }} \leftarrow\left\{P_{u_{1}}^{\bullet}, P_{u_{2}}^{\bullet}, \ldots, P_{u_{k}}^{\bullet}\right\}$.
11: Set $P \leftarrow\{p\} \cup V^{\prime \prime} \cup\{q\}$.
12: Apply Algorithm 2 on inputs $\mathcal{F}_{\text {step }}$ and P, for computing the shortest path $\rho(p, q)$ inside of Π.
13: Convert $\rho(p, q)$ into the standard form of a shortest path by deleting all vertices which are not on any edge of Π (i.e., delete p_{i} if p_{i} is not on an edge of $P_{u_{i}}$).

Time Complexity

We have implemented a simplified version of Algorithm 1 where all P_{v}^{\bullet} were degenerated to be line segments. Thousands of experimental results indicated that $\kappa(\varepsilon)$ does not depend on the number k of segments but the value of ε. We selected $\varepsilon=10^{-15}$ and k was in between 4 and 20,000 , the observed maximal value of $\kappa(\varepsilon)$ was 380,000 . It shows that the smallest upper bound of $\kappa(\varepsilon) \geq \kappa\left(10^{-15}\right) \geq$ 380,000 . In other words, the number of iterations in the while-loop can be huge even for some small value of k. On the other hand, all these experimental results indicated that $\left|L_{m}-L_{m+1}\right| \leq 1 \cdot 2$, when $m>200$ and L was between 10,000 and $2,000,000$. It showed that $\kappa(1 \cdot 2) \leq 200$ and the relative error $\left|L_{m}-L_{m+1}\right| / L \leq 1 \cdot 2 \times 10^{-4}$. In other words, these experiments showed that the algorithm already reached an approximate ESP with a very minor relative error after 200 iterations of the while loop; the remaining iterations were 'just' spent on improving a very small fraction of the length of the path.

An Example

Example. Let Π be a simply connected polyhedron such that each critical polygon is the complement of an axisaligned rectangle. The Euclidean shortest path between p and q inside of Π can be approximately computed in $\kappa(\varepsilon) \cdot \mathcal{O}\left(\left|V_{p q}\right|\right)$ time. Therefore, the 3D ESP problem can be approximately solved efficiently in such a special case. Finding the exact solution is NP-complete because of the following
Theorem 1 ([7], Theorem 4) It is NP-complete to decide wether there exists an obstacle-avoiding path of Euclidean length at most L among a set of stacked axis-aligned rectangles (see Fig. 2). The problem is (already) NP-complete for the special case that the axis-aligned rectangles are all q-rectangles of types 1 or 3 .

Figure 2: A path from p to q which does not intersect any of the shown rectangles at an inner point.

Conclusions

We described an algorithm for solving the 3D ESP problem when the domain Π is a type- 2 simply connected polyhedron. Our algorithm has straightforward applications on ESP problems in 3D imaging (where proposed solutions depend on geodesics), or when 'flying' over a polyhedral terrain. As there does not exist an algorithm for finding exact solutions to the general 3D ESP problem, our method defines a new opportunity to find approximate (and efficient!) solutions to the discussed classical, fundamental, hard and general problems.

References

[1]P. K. Agarwal, R. Sharathkumar, and H. Yu. Approximate Euclidean shortest paths amid convex obstacles. In Proc. ACM-SIAM Sympos. Discrete Algorithms, pages 283-292, 2009.
[2] L. Aleksandrov, A. Maheshwari, and J.-R. Sack. Approximation algorithms for geometric shortest path problems. In Proc. ACM Sympos. Theory Comput., pages 286-295, 2000.
[3] M. Balasubramanian, J. R. Polimeni, and E. L. Schwartz. Exact geodesics and shortest paths on polyhedral surfaces. IEEE Trans. Pattern Analysis Machine Intelligence, 31:1006-1016, 2009.
[4] F. Benmansour, L. D. Cohen. Fast object segmentation by growing minimal paths from a single point on 2D or 3D images. J. Math. Imaging Vision, 33: 209-221, 2009.
[5] T. Deschamps and L. D. Cohen. Fast extraction of minimal paths in 3D images and applications to virtual endoscopy. Med. Image Anal., 5:281-299, 2001
[6] Y. A. Liu. and S. D. Stoller. Optimizing Ackermann's function by incrementalization. In Proc. ACM SIGPLAN Sympos. Partial Evaluation Semantics-Based Program Manipulation, pages 85-91, 2003.
[7] J. S. B. Mitchell and M. Sharir. New results on shortest paths in three dimensions. In Proc. ACM Sympos. Computational Geometry, pages 124-133, 2004.

