
Approximate Shortest Paths in Simple Polyhedra

Fajie Li1 and Reinhard Klette2

1College of Computer Science and Technology, Huaqiao University, Xiamen, Fujian, China
2Computer Science Department, The University of Auckland, New Zealand

email: li.fajie@hqu.edu.cn

Introduction
Minimal paths in volume images have raised interest in
computer vision and image analysis (for example, [4, 5]).
In medical image analysis, minimal paths were extracted
in 3D images and applied to virtual endoscopy [5]. The ex-
isted approximation algorithms for 3D ESP calculations are
not efficient, see, for example, [2, 6]. Recently, [1] proposes
algorithms for calculating approximate ESPs amid a set of
convex obstacles. For latest results related to surface ESPs,
see [3]. In this paper, we apply a rubberband algorithm to
present an approximate

κ(ε) · O(M |V |) +O(M |E| + |S| + |V | log |V |)

algorithm for ESP calculations when Π is a (type-2, see
Definition 2 below) simply connected polyhedron which is
not necessarily convex.
The given algorithm solves approximately three NP-
complete or NP-hard 3D ESP problems in time κ(ε) ·O(k),
where k is the number of layers in a stack, which is intro-
duced as the problem environment below. Our algorithm
has straightforward applications for ESP problems when
analyzing polyhedral objects (e.g., in 3D imaging), or for
‘flying’ over a polyhedral terrain.

Basics
We denote by Π a simple polyhedron in the 3D Euclidean
space, which is equipped with an xyz Cartesian coordinate
system. Let E be the set of edges of Π; V = {v1, v2, . . . , vn}
the set of vertices of Π. For p ∈ Π, let πp be the plane which
is incident with p and parallel to the xy-plane. The intersec-
tion πp ∩ Π is a finite set of simple polygons; a singleton is
considered to be a degenerate polygon.

Definition 1 A simple polygon P , being a connected com-
ponent of πp ∩ Π, is called a critical polygon of Π (with
respect to p).

Definition 2 We say that a simple polyhedron Π is a type-1
polyhedron iff any vertex p defines exactly one convex criti-
cal polygon. We say that a simple polyhedron Π is a type-2
polyhedron iff any vertex p defines exactly one simple criti-
cal polygon.

ESP Computation
Procedure 1 (compute a sequence of vertices of the critical
polygon; see Fig. 1)
Input: Set F and a vertex v ∈ V such that πv intersects Π
in more than just one point.
Output: An ordered sequence of all vertices in Vv, which is
the vertex set of the critical polygon Pv.

v

z

y

x

Figure 1: The labeled vertex v identifies a sequence of
six vertices of the critical polygon Pv, defined by the
intersection of plane πv with the shown (Schönhardt)

polyhedron.
The main ideas of the rubberband algorithm (Algorithm 1)
are as follows: For a start, we randomly take a point in the
closure of each critical polygon to identify an initial path
from p to q. Then we enter a loop; in each iteration, we
optimize locally the position of point p1 by moving it within
its critical polygon, then of p2, . . ., and finally of pk. At the
end of each iteration, we check the difference between the
length of the current path to that of the previous one; if it
is less than a given accuracy threshold ε > 0 then we stop.
Otherwise, we go to the next iteration.

Algorithm 1 (a rubberband algorithm for type-1 polyhedra)
Input: Two points p and q, a set {P •v1

, P •v2
, . . . , P •vk

}, where
Pvi

is a critical polygon of a given polyhedron Π, k vertices
vi ∈ ∂Pvi

such that pz < v1z
< · · · < vkz

< qz, for i =
1, 2, . . . , k, and there is no any other critical polygon of Π
between p and q; given is also an accuracy constant ε > 0.
Output: The set of all vertices of an approximate shortest
path which starts at p, then visits approximate optimal po-
sitions p1, p2, . . ., pk in that order, and finally ends at q.

Algorithm 2 (a rubberband algorithm for type-2 polyhedra)

1: For i ∈ {1, 2, . . . , k}, apply (e.g.) the Melkman algo-
rithm for computing C(Pvi

), the convex hull of Pvi
.

2: Let C(P •v1
), C(P •v2

), . . . , C(P •vk
), p, and q be the input

of Algorithm 1 for computing an approximate shortest
route 〈p, p1, . . . , pk, q〉.

3: For i = 1, 2, . . . , k − 1, find a point qi ∈ C(P •vi
) such

that
de(pi−1, qi)+de(qi, pi+1) = min{de(pi−1, p)+de(p, pi+1) :
p ∈ C(P •vi

)}. Update the path for each i by pi = qi.
4: Let P •v1

, P •v2
, . . . , P •vk

, p and q be the input of Algo-
rithm 1, and points pi as obtained in Step 3 are the
initial vertices pi in Step 1 of Algorithm 1. Continue
with running Algorithm 1.

5: Return 〈p, p1, . . . , pk−1, pk, q〉 as provided in Step 4.

Algorithm 3 (main algorithm)
Input: Two points p and q in Π; sets F and V of faces and
vertices of Π, respectively.
Output: The set of all vertices of an approximate shortest
path, starting at p and ending at q, and contained in Π.

1: Initialize V ′← {v : pz < vz < qz ∧ v ∈ V }.
2: Sort V ′ according to the z-coordinate.
3: We obtain V ′ = {v1, v2, . . . , vk′} with v1z ≤ v2z ≤

. . . ≤ vk′z.
4: Partition V ′ into pairwise disjoint subsets V1, V2, . . .,

and Vk such that
Vi = {vi1, vi2, . . . , vini

}, with vijz
= vij+1z

, for j =
1, 2, . . . , ni − 1, and
vi1z < vi+11z, for i = 1, 2, . . . , k − 1.

5: Set ui← vi1, where i = 1, 2, . . ., k.
6: Set V ′′ ← {u1, u2, . . . , uk} (then we have that u1z <

u2z < . . . < ukz).
7: for each ui ∈ V ′′ do
8: Apply Procedure 1 for computing Vui

(i.e., a se-
quence of vertices of the critical polygon Pui

).
9: end for

10: Set Fstep← {P •u1
, P •u2

, . . . , P •uk
}.

11: Set P ← {p} ∪ V ′′ ∪ {q}.
12: Apply Algorithm 2 on inputs Fstep and P , for comput-

ing the shortest path ρ(p, q) inside of Π.
13: Convert ρ(p, q) into the standard form of a shortest path

by deleting all vertices which are not on any edge of Π
(i.e., delete pi if pi is not on an edge of Pui

).

Time Complexity
We have implemented a simplified version of Algorithm 1
where all P •vi

s were degenerated to be line segments. Thou-
sands of experimental results indicated that κ(ε) does not
depend on the number k of segments but the value of
ε. We selected ε = 10−15 and k was in between 4 and
20,000, the observed maximal value of κ(ε) was 380,000. It
shows that the smallest upper bound of κ(ε) ≥ κ(10−15) ≥
380,000. In other words, the number of iterations in the
while-loop can be huge even for some small value of k.
On the other hand, all these experimental results indicated
that |Lm − Lm+1| ≤ 1.2, when m > 200 and L was be-
tween 10,000 and 2,000,000. It showed that κ(1.2) ≤ 200
and the relative error |Lm−Lm+1|/L ≤ 1.2×10−4. In other
words, these experiments showed that the algorithm already
reached an approximate ESP with a very minor relative er-
ror after 200 iterations of the while loop; the remaining iter-
ations were ‘just’ spent on improving a very small fraction
of the length of the path.

An Example
Example. Let Π be a simply connected polyhedron such
that each critical polygon is the complement of an axis-
aligned rectangle. The Euclidean shortest path between
p and q inside of Π can be approximately computed in
κ(ε) · O(|Vpq|) time. Therefore, the 3D ESP problem can
be approximately solved efficiently in such a special case.
Finding the exact solution is NP-complete because of the
following

Theorem 1 ([7], Theorem 4) It is NP-complete to decide
wether there exists an obstacle-avoiding path of Euclidean
length at most L among a set of stacked axis-aligned rect-
angles (see Fig. 2). The problem is (already) NP-complete
for the special case that the axis-aligned rectangles are all
q-rectangles of types 1 or 3.

z

5

x

y

-2-4-6-8

p

q

Figure 2: A path from p to q which does not intersect
any of the shown rectangles at an inner point.

Conclusions
We described an algorithm for solving the 3D ESP prob-
lem when the domain Π is a type-2 simply connected poly-
hedron. Our algorithm has straightforward applications on
ESP problems in 3D imaging (where proposed solutions de-
pend on geodesics), or when ‘flying’ over a polyhedral ter-
rain. As there does not exist an algorithm for finding exact
solutions to the general 3D ESP problem, our method de-
fines a new opportunity to find approximate (and efficient!)
solutions to the discussed classical, fundamental, hard and
general problems.

References

[1] P. K. Agarwal, R. Sharathkumar, and H. Yu. Ap-
proximate Euclidean shortest paths amid convex ob-
stacles. In Proc. ACM-SIAM Sympos. Discrete Algo-
rithms, pages 283–292, 2009.

[2] L. Aleksandrov, A. Maheshwari, and J.-R. Sack. Ap-
proximation algorithms for geometric shortest path
problems. In Proc. ACM Sympos. Theory Comput.,
pages 286–295, 2000.

[3] M. Balasubramanian, J. R. Polimeni, and E. L.
Schwartz. Exact geodesics and shortest paths on poly-
hedral surfaces. IEEE Trans. Pattern Analysis Machine
Intelligence, 31:1006–1016, 2009.

[4] F. Benmansour, L. D. Cohen. Fast object segmentation
by growing minimal paths from a single point on 2D
or 3D images. J. Math. Imaging Vision, 33: 209–221,
2009.

[5] T. Deschamps and L. D. Cohen. Fast extraction of min-
imal paths in 3D images and applications to virtual en-
doscopy. Med. Image Anal., 5:281–299, 2001.

[6] Y. A. Liu. and S. D. Stoller. Optimizing Ackermann’s
function by incrementalization. In Proc. ACM SIG-
PLAN Sympos. Partial Evaluation Semantics-Based
Program Manipulation, pages 85–91, 2003.

[7] J. S. B. Mitchell and M. Sharir. New results on short-
est paths in three dimensions. In Proc. ACM Sympos.
Computational Geometry, pages 124–133, 2004.

