

Approximate Shortest Paths in Simple Polyhedra

Fajie Li¹ and Reinhard Klette²

¹College of Computer Science and Technology, Huaqiao University, Xiamen, Fujian, China ²Computer Science Department, The University of Auckland, New Zealand

email: li.fajie@hqu.edu.cn

Introduction

Minimal paths in volume images have raised interest in computer vision and image analysis (for example, [4, 5]). In medical image analysis, minimal paths were extracted in 3D images and applied to virtual endoscopy [5]. The existed approximation algorithms for 3D ESP calculations are not efficient, see, for example, [2, 6]. Recently, [1] proposes algorithms for calculating approximate ESPs amid a set of convex obstacles. For latest results related to surface ESPs, see [3]. In this paper, we apply a rubberband algorithm to present an approximate

Algorithm 1 (a rubberband algorithm for type-1 polyhedra)

Input: Two points p and q, a set $\{P_{v_1}^{\bullet}, P_{v_2}^{\bullet}, \ldots, P_{v_k}^{\bullet}\}$, where P_{v_i} is a critical polygon of a given polyhedron Π , k vertices $v_i \in \partial P_{v_i}$ such that $p_z < v_{1_z} < \cdots < v_{k_z} < q_z$, for i = $1, 2, \ldots, k$, and there is no any other critical polygon of Π between p and q; given is also an accuracy constant $\varepsilon > 0$. *Output:* The set of all vertices of an approximate shortest path which starts at p, then visits approximate optimal positions p_1, p_2, \ldots, p_k in that order, and finally ends at q.

An Example

Example. Let Π be a simply connected polyhedron such that each critical polygon is the complement of an axisaligned rectangle. The Euclidean shortest path between p and q inside of Π can be approximately computed in $\kappa(\varepsilon) \cdot \mathcal{O}(|V_{pq}|)$ time. Therefore, the 3D ESP problem can be approximately solved efficiently in such a special case. Finding the exact solution is NP-complete because of the following

 $\kappa(\varepsilon) \cdot \mathcal{O}(M|V|) + \mathcal{O}(M|E| + |S| + |V| \log |V|)$

algorithm for ESP calculations when Π is a (type-2, see Definition 2 below) simply connected polyhedron which is not necessarily convex.

The given algorithm solves approximately three NPcomplete or NP-hard 3D ESP problems in time $\kappa(\varepsilon) \cdot \mathcal{O}(k)$, where k is the number of layers in a stack, which is introduced as the *problem environment* below. Our algorithm has straightforward applications for ESP problems when analyzing polyhedral objects (e.g., in 3D imaging), or for 'flying' over a polyhedral terrain.

Basics

We denote by Π a *simple polyhedron* in the 3D Euclidean space, which is equipped with an xyz Cartesian coordinate system. Let E be the set of edges of Π ; $V = \{v_1, v_2, \ldots, v_n\}$ the set of vertices of Π . For $p \in \Pi$, let π_p be the plane which is incident with p and parallel to the xy-plane. The intersection $\pi_p \cap \Pi$ is a finite set of simple polygons; a singleton is considered to be a degenerate polygon.

Algorithm 2 (a rubberband algorithm for type-2 polyhedra)

1: For $i \in \{1, 2, \dots, k\}$, apply (e.g.) the Melkman algorithm for computing $C(P_{v_i})$, the convex hull of P_{v_i} . 2: Let $C(P_{v_1}^{\bullet}), C(P_{v_2}^{\bullet}), \ldots, C(P_{v_k}^{\bullet})$, p, and q be the input of Algorithm 1 for computing an approximate shortest route $\langle p, p_1, \ldots, p_k, q \rangle$.

3: For $i = 1, 2, \ldots, k - 1$, find a point $q_i \in C(P_{v_i}^{\bullet})$ such that

 $d_e(p_{i-1}, q_i) + d_e(q_i, p_{i+1}) = \min\{d_e(p_{i-1}, p) + d_e(p, p_{i+1}):$ $p \in C(P_{v_i}^{\bullet})$. Update the path for each *i* by $p_i = q_i$.

4: Let $P_{v_1}^{\bullet}, P_{v_2}^{\bullet}, \ldots, P_{v_k}^{\bullet}$, p and q be the input of Algorithm 1, and points p_i as obtained in Step 3 are the initial vertices p_i in Step 1 of Algorithm 1. Continue -8 with running Algorithm 1.

5: Return $\langle p, p_1, \ldots, p_{k-1}, p_k, q \rangle$ as provided in Step 4.

Algorithm 3 (main algorithm)

Input: Two points p and q in Π ; sets \mathcal{F} and V of faces and vertices of Π , respectively.

Output: The set of all vertices of an approximate shortest path, starting at p and ending at q, and contained in Π .

1: Initialize $V' \leftarrow \{v : p_z < v_z < q_z \land v \in V\}.$

2: Sort V' according to the z-coordinate.

Theorem 1([7], Theorem 4) It is NP-complete to decide wether there exists an obstacle-avoiding path of Euclidean length at most L among a set of stacked axis-aligned rectangles (see Fig. 2). The problem is (already) NP-complete for the special case that the axis-aligned rectangles are all *q*-rectangles of types 1 or 3.

Figure 2: A path from *p* to *q* which does not intersect any of the shown rectangles at an inner point.

Conclusions

We described an algorithm for solving the 3D ESP prob-3: We obtain $V' = \{v_1, v_2, \dots, v_{k'}\}$ with $v_{1z} \le v_{2z} \le$ lem when the domain Π is a type-2 simply connected polyhedron. Our algorithm has straightforward applications on ESP problems in 3D imaging (where proposed solutions depend on geodesics), or when 'flying' over a polyhedral terrain. As there does not exist an algorithm for finding exact solutions to the general 3D ESP problem, our method defines a new opportunity to find approximate (and efficient!) solutions to the discussed classical, fundamental, hard and general problems.

Definition 1*A simple polygon P, being a connected com*ponent of $\pi_p \cap \Pi$, is called a critical polygon of Π (with *respect to p).*

Definition 2 *We say that a simple polyhedron* Π *is a* type-1 polyhedron iff any vertex p defines exactly one convex critical polygon. We say that a simple polyhedron Π is a type-2 polyhedron iff any vertex p defines exactly one simple critical polygon.

ESP Computation

Procedure 1 (compute a sequence of vertices of the critical polygon; see Fig. 1)

Input: Set \mathcal{F} and a vertex $v \in V$ such that π_v intersects Π in more than just one point.

Output: An ordered sequence of all vertices in V_v , which is the vertex set of the critical polygon P_v .

- $\ldots \leq v_{k'z}$.
- 4: Partition V' into pairwise disjoint subsets V_1, V_2, \ldots , and V_k such that

 $V_i = \{v_{i1}, v_{i2}, \ldots, v_{in_i}\}$, with $v_{ij_z} = v_{ij+1_z}$, for $j = v_{ij+1_z}$ $1, 2, \ldots, n_i - 1$, and $v_{i1z} < v_{i+11z}$, for $i = 1, 2, \ldots, k-1$. 5: Set $u_i \leftarrow v_{i1}$, where $i = 1, 2, \ldots, k$. 6: Set $V'' \leftarrow \{u_1, u_2, \ldots, u_k\}$ (then we have that $u_{1z} <$ $u_{2z} < \ldots < u_{kz}$). 7: for each $u_i \in V''$ do

Apply Procedure 1 for computing V_{u_i} (i.e., a se-8: quence of vertices of the critical polygon P_{u_i}).

9: end for

10: Set
$$\mathcal{F}_{step} \leftarrow \{P_{u_1}^{\bullet}, P_{u_2}^{\bullet}, \dots, P_{u_k}^{\bullet}\}$$

11: Set $P \leftarrow \{p\} \cup V'' \cup \{q\}.$

- 12: Apply Algorithm 2 on inputs \mathcal{F}_{step} and P, for computing the shortest path $\rho(p,q)$ inside of Π .
- 13: Convert $\rho(p,q)$ into the standard form of a shortest path by deleting all vertices which are not on any edge of Π (i.e., delete p_i if p_i is not on an edge of P_{u_i}).

Time Complexity

We have implemented a simplified version of Algorithm 1 where all $P_{v_i}^{\bullet}$ s were degenerated to be line segments. Thou-

References

- [1] P. K. Agarwal, R. Sharathkumar, and H. Yu. Approximate Euclidean shortest paths amid convex obstacles. In Proc. ACM-SIAM Sympos. Discrete Algorithms, pages 283–292, 2009.
- [2] L. Aleksandrov, A. Maheshwari, and J.-R. Sack. Approximation algorithms for geometric shortest path problems. In Proc. ACM Sympos. Theory Comput., pages 286–295, 2000.
- [3] M. Balasubramanian, J. R. Polimeni, and E. L. Schwartz. Exact geodesics and shortest paths on polyhedral surfaces. IEEE Trans. Pattern Analysis Machine *Intelligence*, **31**:1006–1016, 2009.

Figure 1: The labeled vertex v identifies a sequence of six vertices of the critical polygon P_v , defined by the intersection of plane π_v with the shown (Schönhardt) polyhedron.

The main ideas of the rubberband algorithm (Algorithm 1) are as follows: For a start, we randomly take a point in the closure of each critical polygon to identify an initial path from p to q. Then we enter a loop; in each iteration, we optimize locally the position of point p_1 by moving it within its critical polygon, then of p_2, \ldots , and finally of p_k . At the end of each iteration, we check the difference between the length of the current path to that of the previous one; if it is less than a given accuracy threshold $\varepsilon > 0$ then we stop. Otherwise, we go to the next iteration.

sands of experimental results *indicated* that $\kappa(\varepsilon)$ does not depend on the number k of segments but the value of ε . We selected $\varepsilon = 10^{-15}$ and k was in between 4 and 20,000, the observed maximal value of $\kappa(\varepsilon)$ was 380,000. It shows that the smallest upper bound of $\kappa(\varepsilon) \geq \kappa(10^{-15}) \geq \varepsilon$ 380,000. In other words, the number of iterations in the while-loop can be huge even for some small value of k. On the other hand, all these experimental results indicated that $|L_m - L_{m+1}| \leq 1.2$, when m > 200 and L was between 10,000 and 2,000,000. It showed that $\kappa(1.2) \le 200$ and the relative error $|L_m - L_{m+1}|/L \le 1.2 \times 10^{-4}$. In other words, these experiments showed that the algorithm already reached an approximate ESP with a very minor relative error after 200 iterations of the while loop; the remaining iterations were 'just' spent on improving a very small fraction of the length of the path.

[4] F. Benmansour, L. D. Cohen. Fast object segmentation by growing minimal paths from a single point on 2D or 3D images. J. Math. Imaging Vision, 33: 209-221, 2009.

[5] T. Deschamps and L. D. Cohen. Fast extraction of minimal paths in 3D images and applications to virtual endoscopy. Med. Image Anal., 5:281–299, 2001.

[6] Y. A. Liu. and S. D. Stoller. Optimizing Ackermann's function by incrementalization. In Proc. ACM SIG-PLAN Sympos. Partial Evaluation Semantics-Based Program Manipulation, pages 85–91, 2003.

[7] J. S. B. Mitchell and M. Sharir. New results on shortest paths in three dimensions. In Proc. ACM Sympos. Computational Geometry, pages 124–133, 2004.