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Introduction

We will define relations between quasi-linear transformations, numera-
tion systems and fractals. A Quasi-Linear Transformation (QLT) is a
transformation on Zn which corresponds to the composition of a linear
transformation with an integer part function. We will first give some
theoretical results about QLTs. We will then point out relations be-
tween QLTs, numeration systems and fractals. These relations allow us
to define new numeration systems, fractals associated with them and
n-dimensional fractals. With help of some properties of the QLTs we
can give the fractal dimension of these fractals.

Definitions

A = integer matrix, ω = positive integer, ⌊ ⌋ = integer part function

Linear transformation : g :

{
Qn → Qn

X → Y = 1
ωAX

Definitions

– Quasi-linear transformation : G :

{
Zn → Zn

X → Y = ⌊ 1
ωAX⌋

– Tile with index X ∈ Zn : PX = {Y ∈ Zn|G(Y ) = X}

– Tile of order p with index X ∈ Zn : P
p
X = {Y ∈ Zn|Gp(Y ) = X}
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Figure 1: Tiles of a QLT.
The index of a tile corresponds
to the quotient of an euclidian
division, for each point we give
the remainder of this division.

Figure 2: p-tile of the QLT

defined by 1
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Behaviour under iteration.

Behaviour of the sequence : Xn+1 = G(Xn)
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Figure 3: Behaviour under
iteration of a QLT

Figure 4: Attraction basins
of a QLT with a lot of cy-
cles. The QLT is defined by
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Figure 5: A consistent QLT,
the colour of a point depends
on the number of iteration nec-
essary to reach O. The QLT is

defined by 1
3
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)
.

Figure 6: The colour of a
point depends on its attraction
basins. The QLT is defined by
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Definition A consistent QLT has the origin O as unique fixed
point : For each point Y it exists n such that (Gn(Y ))n≥0 = O.

Theorem A 2D-QLT G such that ||g||∞ < 1 is consistent if and
only if one of the three following conditions is verified :

(1) b ≤ 0, a + b ≤ 0, c > 0 and d ≤ 0
(2) a ≤ 0, b > 0, c ≤ 0 and c + d ≤ 0
(3) a ≤ 0, b ≤ 0, c ≤ 0 and d ≤ 0

Tiles associated with particular QLTs

Definition A QLT defined by 1
wA such that w = m det(A) where

m is a positive integer, is called a m-determinantal QLT.

Proposition The p-tiles generated by a m-determinantal QLT are
all geometrically identical. More precisely, if Tv refers to the trans-
lation of the vector v and if ÂT is the transpose of the cofactor
matrix of A we have, for all p ≥ 1 :

P
p
Y = T(

mÂT

)p

Y
P

p
O

and P
p+1
O =

⋃

X∈PO

T(
mÂT

)p

X
P

p
O =

⋃

X∈P
p
O

T(
mÂT

)
X

PO

Proposition The number of points of a p-tile generated by a m-
determinantal QLT in Zn is equal to δp(n−1)mnp where δ = det(A).

Figure 7: p-tiles of the QLT

defined by 1
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Figure 8: p-tiles of the QLT

defined by 1
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QLT and numeration systems

Let β denote a complex number and D a finite set of elements of Z[β].
(β,D) is a valid base for Z[β] if each element c of Z[β] can be written
uniquely in the form c = c0 + c1β + c2β

2 . . . + cnβn with ci ∈ D and
n ∈ N

Gaussian integers

In this section we denote β = a + ib with a, b ∈ Z

Definition Let c = x+ iy, the integer division of c by β is defined
by : ⌊

c

β

⌋
=

⌊
ax + by

a2 + b2

⌋
+ i

⌊−bx + ay

a2 + b2

⌋
.

Proposition Let c = x + iy and c′ = x′ + iy′ =

⌊
c

β

⌋
, the point

(x′, y′) = Gβ(x, y) where Gβ is defined by 1
a2+b2

(
a b

−b a

)
.

Theorem Let D =

{
c|

⌊
c

β

⌋
= 0

}
, the three following properties

are equivalent :

1. (β,D) is a numeration system,

2. The QLT Gβ is a consistent Quasi-Linear Transformation,

3. a ≤ 0 and |a| + |b| > 1.

Remark Note PO and P
p
O the tiles defined by Gβ . P

p
O represents

the elements of Z[β] such that the decomposition in the numeration
system is of length p.

Algebraic integers

In this section β denotes an algebraic integer such that β2 +bβ +a = 0
with a, b ∈ Z. We only consider the case where β is a complex number,
that is to say b2 − 4a < 0. Let define β1 = q + β with q ∈ Z.

Definition Let c = x′ + y′β1, the quotient of the integer division

of c by β is defined by ⌊ c
β
⌋ = ⌊x′(q−b)+y′(q2−qb+a)

a ⌋ + ⌊(−x′−y′q)
a ⌋β1.

Proposition Let c = x + iy and c′ = x′ + iy′ =⌊
c

β

⌋
, the point (x′, y′) = Gβ1

(x, y) where Gβ1
is defined by

1
a

(
q − b a − qb + q2

−1 −q

)
.

Theorem Let D =

{
c ∈ Z[β]|

⌊
c

β

⌋
= 0

}
, the three following

properties are equivalent :

1. There exists q such that (β,D) is a numeration system,

2. There exists q such that the QLT Gβ1
is a consistent QLT,

3. (b ≥ 2 ) or (b = 1 and a ≥ 2)

QLTs and fractals

We consider m-determinantal QLTs and p-tiles associated with them,
let define the set

Kp =
1

(m
√

δ)p
P

p
O

The border of Kp can be generated with a substitution and tends
toward a fractal.

Figure 9: Border of P 12
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Figure 10: p-tile of the QLT
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Figure 11: Border of P 7
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Figure 12: p-tile of the QLT
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Denote by P ′
O a subset of PO, and define

P
′p+1
O =

⋃

X∈P ′
O

T(
mÂT

)p

X
P
′p
O =

⋃

X∈P
′p
O

T(
m̂A

T
)
X

P ′
O

Proposition Let denote Np the number of points of P
′p
O

and N

the number of points removed from PO to obtain P ′
O. We have

Np = (mnδn−1 − N )p.

At each step, we divide the size of the points by mδ
n−1

n . If we consider
numeration systems, P ′

O corresponds to a subset D′ of the set of digits
D, so that the fractal obtained corresponds to the set of numbers with
zero integer part and whose decomposition uses only the digits of D′.

Figure 13: The QLT is de-

fined by 1
9

(
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)
, the frac-

tal dimension of the set is
log(7)
log(3)

= 1, 7712.

Figure 14: QLT defined by
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, the fractal di-

mension of the set is 2
log(8)
log(13)

=

1, 6214.

Figure 15: QLT defined by
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and the fractal di-

mension of the set is
2 log(5)
log(8)

=

1, 5479.

Figure 16: QLT defined by
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 and the fractal

dimension of the set is
log(3)
log(2)

=

1, 585.


