MEASURES FOR SURFACE COMPARISON ON UNSTRUCTURED GRIDS WITH DIFFERENT DENSITY

Natalia Dyshkant

Faculty of Computational Mathematics and Cybernetics, Lomonosov Moscow State University Moscow, Russian Federation

Abstract

We consider the problem of surface comparison given as spatial point clouds that can be explicitly projected onto a plane. This variables given on different grids. A general case when both grids are unstructured and have different density is considered. A measure to compare such functions that allows to estimate difference on areas with nodes from both grids and an algorithm to compute it are proposed. Estimation for computational complexity of the algorithm is presented. Computing experiments on real data (3d face models)

INTRODUCTION

With the rapid progress of modern 3d scanning technologies, objects' surfaces can be routinely acquired as discrete surface models. Spatial object's shape can be considered as a set of schicht surfaces, i.e.,
that can be uniquely proiected onto a plane. In this work, new measures for comparison of such surfaces and effective methods to compute them are devised.
There are two main presentation methods for modelling of schlicht surfaces: definition on structured and unstructured grids. Using of structured grids has some essential disadvantages. Raw chlicht surface data acquired by 3d scanner can be considered as a
discrete function defined at nodes of unstructured grid. In this case surface approximation quality is higher. At the same time it is equired to introduce and design more complex measures and processing algorithms. In this work, we propose the approach, which saves initial nonregularity of grids.

Examples of schincht surface (on the eern
and uniform structured) grid (on the

SURFACE COMPARISON PROBLEM

Problem Statement

- Suppse wo shicht surfaces $S_{\nu} S_{2}$ are given by functions F_{ν}, F_{2} at Se nodes of grids $G_{\nu} G_{2}$, respectively. It is required to introduce compute them.
Suppose G_{1} and G_{2} are contained inside a certain general rectangle R, \bar{F}_{1} and \bar{F}_{2} are continuous on R analogs of functions F_{1} and F_{2}, that are derived by interpolation. Denote by T_{1} and T_{2} the Delaunay triangulations constructed on grids G_{1} and $G_{y y}$ respectively. The Delaunay triangulation constructed on the union G of two grids $G_{1 \nu} G_{2}$ is called general Delaunay triangulation and denoted by T.

Proposed Measures

Consider a function $\mu(x, y)$ that defined weight of difference between with significance of function similarity in the region contained this point. Let A, B, C be nodes of triangle in grid G. By definition, put:
$V_{\mu}\left(A, B, C, F_{1}, F_{2}\right)=\iint_{\Delta A B C}\left|\hat{F}_{1}(x, y)-\hat{F}_{2}(x, y)\right| \mu(x, y) d x d y$.
In [2] the author proposed the following measure
$\rho_{V_{\mu}}\left(F_{1}, F_{2}\right)=\sum_{\triangle A B C \in T} V_{\mu}\left(A, B, C, F_{1}, F_{2}\right) / S_{\triangle A B C}$

METHODS

During merging process of two Delaunay triangulations T_{1} and T_{2}, some edges and triangles move to the united triangulation without changes and
some of them are destroyed. So there are new edges and triangles, which connect nodes from different grids, in the general triangulation T
We say that an edge or a triangle is called interface if it connects nodes
from both of grids $G_{11} G_{2}$. Measure (3) is calculated over interface triangles only.
Algorithm for Interface Triangles Extraction
A set of interface triangles decomposes on several subsets. Each subset is a chain of triangles, which are pairwise incident by edges. This chain can be
closed or open-ended. closed or open-ended.

Two triangulated grids (on the efft); general Delaunay triangulation with fill interface
triangles (oon the mididle); two open-ended chains and three closed chains of interface triangles (on the midala)
triangles (on the right)

We say that an interface edge of general triangulation T is called a starter if it belongs to a chain that is not traced yet. A starter initializes the process of chain tracing.
Hence the proposed algorithm for interface triangles extraction consists of the following stages:

Search for initial starter
Tracing of chain of interface triangles. Using an algorithm for merging nonseparated Delaunay triangulations Search for next starter

Computational Efficiency of Surface Comparison Algorithm Theorem 2. Localization of grid nodes in triangulation can be implemented using list of interface triangles in linear time.
1 Construction of Delunay triangulations $T_{1 \nu} T_{2} \sim O\left(N_{1} \log N_{1}\right)+O\left(N_{2} \log N_{2}\right)$; Construction of minimal spanning trees of triangulations using Cheriton Tarian algorithm $\sim O\left(N_{1}\right)+O\left(N_{2}\right)$;
Localization of each of grids $G_{\nu /} G_{2}$ in triangulation of the other grid (theorem 2) ~O(N);
5 Interpolation of fun
Interpolation of function F_{1} at nodes of G_{2} and of function F_{2} at nodes of G_{1} (N);

Computing measure (3) over all interface triangles $\sim \mathrm{O}(\mathrm{N})$.
Theorem 3. Computational complexity of algorithm for computing measure (3) is $O(N \log N)$. If Delaunay triangulations of initial grids are constructed during preprocessing stage then computational complexity of
the algorithm is linear. the algorithm is linear
Surface Mathing: search for best fitting

Positioning of 3d jaw model in 3d head model using a reference object

EXPERIMENTS

Computational experiments were carried out on 3d face mode acquired by 3 d scanner Broadway designed by Artec Group
Company $[1]$ The database consists of 48 models received by Company [1]. The database consists of 48 models received by
scanning of 8 different persons (6 different models for each pers Different models of one and the same person were used as surfaces for comparison.
Suppose $S_{y} S_{2}$ are surfaces for comparison, $S_{2}{ }^{\prime}$ ' is a reduced (simplified) second surface. S_{2}^{\prime} ' is acquired from S_{2} by uniform random thinning of the second grid. As the result of thinning 15\% nodes of the second grid were removed.
approximately equal density. Hence we assume but has approximately equal density. Hence we assume a value of
measure (2) between them as adequate initial estimation. Grids of S, and $S_{2}{ }^{\prime}$ are unstructured grids with different density

Table 1. Value of measures (2) \& (3) for surface compariso

Table 1 shows an example of measure values for comparison of surfaces from the database. We see that the measure (3) estimates difference between surfaces S_{1} and S_{2} more adequate than the measure (2).

CONCLUSIONS

New measure adapted for comparison problem of surfaces defined efficient algorithm for n . different density is introduced. An The algorihm for measure computing is proposed.
-he measure allows only surface fragments that are represented by nodes of both grids. We call such fragments interface fragments. For efficiency of measure computing a new algorithm for interface triangles extraction is proposed. Computational complexity of the
algorithm is presented algorithm is presented.
grids with different density for comparison of surfaces defined on estimations have shown, the introduced measure is adequate for such kind of source grids.

Literature cited

[1] Artec Group - 3D Scanning Technologies, http://www.artec-group.com. [2] Dyshkant, N.: Disparity Measure Construction. for Comparison of 3D
Objects' Surfaces. In: Proceedings of the 2nd InternationalWorkshop on Image Mining, Theory and Applications (IMTA-2-2009), pp. 43-52. INSTICC
Press. Lisbon (2000). Press, Lisbon (2009).
[3]. Mestetskiy, L., Tsarik, E.: Delaunay triangulation: recursion without
space division of vertices. Graphics and Vision GraphiCon 2004, pp. 267-270. CMC MSU Press, Graphics and
Moscow (2004).

Acknowledgements
The author is grateful to professor Leonid Mestetskiy for his
supervision, constant attention to this work and useful discussions.
This research was partially y supported by te Russian Foundation for
Basic Research (grants 08-01-00670, 10-07-00609).
For Further Information Please contact Natalia.Dyshkant@gmail.com.

