ACCORD: With Approximate Covering of Convex ORTHOGONAL DECOMPOSITION

Mousumi Dutt, Arindam Biswas : Bengal Engineering and Science University, Shibpur, India Partha Bhowmick : Indian Institute of Technology, Kharagpur, India \{duttmousumi,barindam\}@gmail.com, bhowmick@gmail.com

Objective

To decompose approximately a 2D digital object by partitioning the inner cover, $A_{i n \prime}^{\prime}$, the maximally inscribed orthogonal polygon) of the object into a set of orthogonally convex components.

Object A

Conditions:
Decomposition of hole-free polyomino (here, $A_{\text {in }}^{\prime}$) into a sub-optimal ${ }^{a}$ set of orthogonally convex components (OCC or, hv-convex polyominoes) such that - each OCC is orthogonal with all its vertices as grid points

- no two OCC overlap each other except at their boundaries

Open Problem:

To the best of our knowledge, there exists no proof till date to show whether partitioning an orthogonal polygon into a minimal set of OCCs can be done in polynomial time.

PRELIMINARIES

Types of Concavity:

- Four kinds of simple concavities ("1331" vertex pattern): Type L (left), Type R (right), Type T (top), Type B (bottom)
- Three or more consecutive Type 3 vertices form a compound concavity, stored as simple concavities in L_{c}

Type L Type R

Proposed Algorithm

Sub-polygon of a Concavity:

- Concavity line, l_{i} divides the polygon into two sub-polygons lying one side of l_{i} and the main polygon on other side
- Each sub-polygon has at least two points on l_{i}, start vertex and terminal vertex
- Terminal vertices are determined using H_{x} and H_{y}

RULES FOR DECOMPOSITION

- Rules are applied to a pair of concavities at a time to obtain (sub-)optimality

Two Simple, Orthogonal, Consecutive Concavities:

- l_{1} and l_{2} corresponding to C_{1} and C_{2} are orthogonal and intersect at v
- no sub-polygon of any concavity contains the other concavity in full
- Extraction of one sub-polygon (by traversing from s_{12} to $v=t_{12}$) resolves both C_{1} and C_{2}
\bullet Combined type of C_{1} and C_{2} : LB, BR, RT, TL

Cases:

1. $v \in\left\{s_{11}, s_{12}, s_{21}, s_{22}\right\}: v$ is present in L
2. v lies on the edge $\left(s_{11}, s_{12}\right)$ or $\left(s_{21}, s_{22}\right)$: v is inserted in L (using H_{x} and H_{y})
3. v lies not on the boundary but inside $A_{i n}^{\prime}: v$ is inserted in L as above
4. v lies on (the boundary of) or outside $A_{i n}^{\prime}$: Find v^{\prime}. If it is inside $A_{i n}^{\prime}$, then one component is extracted, otherwise both P_{11} and P_{22} are extracted
5. If $C_{1}\left(C_{2}\right)$ lies entirely in one sub-polygon, say P_{21}, corresponding to $C_{2}\left(C_{1}\right)$, then both P_{11} and P_{22} are extracted

Rules of decomposition for $l_{1} \perp l_{2}$

Two Simple, Parallel, Consecutive Concavities:

- If the projection of the edge $\left(s_{11}, s_{12}\right)$ on l_{2} (or the edge $\left(s_{21}, s_{22}\right)$ on l_{1}) lies on or inside $A_{i n}^{\prime}$, then extraction of one sub-polygon resolves both C_{1} and C_{2}
- Otherwise, P_{11} and P_{21} are extracted to resolve C_{1} and C_{2}

Rules of decomposition for $l_{1} \| l_{2}$

Compound Concavities:

- $t(>2)$ consecutive Type 3 vertices broken into $t-1$ simpler concavities, each consisting of two consecutive Type 3 vertices

Decomposition of compound concavity (three pairs solved in three steps)

DEMONSTRATION

(c)
(d)

(e)

Time Complexity

- Stage 1: Construction of $A_{i n}^{\prime}, L, L_{c}$
H_{x}, H_{y} takes $O(n \log n)$ time
- Stage 2: Rules are applied which requires $O(n \log n)$ time
- Overall Complexity: $O(n \log n)$

EXPERIMENTAL RESULTS

- The count, k, for OCC depends on the grid size, number of concavities, and their orientation

$g=12, c=4, k=3 \quad g=15, c=3, k=3$

$g=9, c=3, k=3 \quad g=20, c=2, k=2$

$g=1, c=4, k=3 \quad g=10, c=4, k=3$

$g=1, c=3, k=3 \quad g=11, c=3, k=3$

$g=3, c=4, k=3 \quad g=18, c=4, k=3$

$g=14, c=2, k=2 g=19, c=3, k=3$

CONCLUSION

- Efficient and robust algorithm
- Results shown are mostly optimal
- Application: shape analysis

