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OBJECTIVE

To decompose approximately a 2D

digital object by partitioning the

inner cover, A′
in, (the maximally

inscribed orthogonal polygon) of the

object into a set of orthogonally

convex components.

Object A

Inner isothetic Decomposition
cover, A′

in of A′
in

Conditions:

Decomposition of hole-free polyomino
(here, A′

in) into a sub-optimala set of
orthogonally convex components (OCC
or, hv-convex polyominoes) such that

• each OCC is orthogonal with all its
vertices as grid points

•no two OCC overlap each other
except at their boundaries

Open Problem:

To the best of our knowledge, there
exists no proof till date to show
whether partitioning an orthogonal
polygon into a minimal set of OCCs
can be done in polynomial time.

PRELIMINARIES

Types of Concavity:

•Four kinds of simple concavities
(“1331” vertex pattern): Type L (left),
Type R (right), Type T (top), Type B
(bottom)

•Three or more consecutive Type 3
vertices form a compound concavity,
stored as simple concavities in Lc
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aExhaustive experimentation shows that our algorithm frequently

produces optimal solutions.

PROPOSED ALGORITHM

Sub-polygon of a Concavity:

v1

v2

v3

v4
v5

v6

v7

v8 v9

v10 v11

v12 v13

v14

C1

P11

P12

v′

3

l1

v1

v2

v3

v4
v5

v6 v7

v8 v9

v10 v11

v12 v13

v14

v′

10 v′

11

C2

P21 P22

l2

•Concavity line, li divides the polygon
into two sub-polygons lying one side
of li and the main polygon on other
side

•Each sub-polygon has at least two
points on li, start vertex and terminal
vertex

•Terminal vertices are determined
using Hx and Hy

RULES FOR DECOMPOSITION

•Rules are applied to a pair of
concavities at a time to obtain
(sub-)optimality

Two Simple, Orthogonal, Consecutive
Concavities:

• l1 and l2 corresponding to C1 and C2

are orthogonal and intersect at v

•no sub-polygon of any concavity
contains the other concavity in full

•Extraction of one sub-polygon (by
traversing from s12 to v = t12) resolves
both C1 and C2

•Combined type of C1 and C2: LB, BR,
RT, TL

Cases:

1. v ∈ {s11, s12, s21, s22}: v is present in L

2. v lies on the edge (s11, s12) or (s21, s22):
v is inserted in L (using Hx and Hy)

3. v lies not on the boundary but inside
A′

in: v is inserted in L as above

4. v lies on (the boundary of) or outside
A′

in: Find v′. If it is inside A′
in, then

one component is extracted,
otherwise both P11 and P22 are
extracted

5. If C1 (C2) lies entirely in one
sub-polygon, say P21, corresponding
to C2 (C1), then both P11 and P22 are
extracted
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Rules of decomposition for l1 ⊥ l2

Two Simple, Parallel, Consecutive
Concavities:

• If the projection of the edge (s11, s12)
on l2 (or the edge (s21, s22) on l1) lies on
or inside A′

in, then extraction of one
sub-polygon resolves both C1 and C2

•Otherwise, P11 and P21 are extracted
to resolve C1 and C2
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Rules of decomposition for l1 || l2

Compound Concavities:

• t(>2) consecutive Type 3 vertices
broken into t − 1 simpler concavities,
each consisting of two consecutive
Type 3 vertices
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Decomposition of compound concavity
(three pairs solved in three steps)

DEMONSTRATION
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TIME COMPLEXITY

• Stage 1: Construction of A′
in, L, Lc,

Hx, Hy takes O(n log n) time

• Stage 2: Rules are applied which
requires O(n log n) time

•Overall Complexity: O(n log n)

EXPERIMENTAL RESULTS

•The count, k, for OCC depends on the
grid size, number of concavities, and
their orientation

g = 12, c = 4, k = 3 g = 15, c = 3, k = 3

g = 9, c = 3, k = 3 g = 20, c = 2, k = 2

g = 1, c = 4, k = 3 g = 10, c = 4, k = 3

g = 1, c = 3, k = 3 g = 11, c = 3, k = 3

g = 3, c = 4, k = 3 g = 18, c = 4, k = 3

g = 14, c = 2, k = 2 g = 19, c = 3, k = 3

g = 9, c = 4, k = 3 g = 20, c = 4, k = 3

CONCLUSION

•Efficient and robust algorithm

•Results shown are mostly optimal

•Application: shape analysis


