Image Denoising with a Constrained Discrete Total Variation Scale Space

Igor Ciril, LMCS, Institut Polytechnique des Sciences Avancées (IPSA) Jérôme Darbon, CNRS / CMLA, Ecole Normale Supérieure Cachan

Contribution

We consider a combinatorial approach that relies on coupling the TV-flow (which corresponds to the solution of a differential inclusion) that incrementally simplifies the original noisy image with a procedure that intends to recover the contrast.

Notations

- Markovian framework:
 - set of pixels : \mathcal{V}

A coupled scale-space approach

Approach coupling two procedures

- 1. Procedure of simplification (denoising but loss of contrast) of the observed image: $t \mapsto \mathbf{u}(t)$ solution of DTV-flow
- 2. Procedure that respects shapes and recovers the contrast: $t \mapsto \tilde{\mathbf{u}}(t)$ is the image that is the closest to the observed image **f** having the same relative order as u(t). This corresponds to the projection of **f** onto the convex set:

$$\bigcap_{(j)\in\mathcal{W}} \left\{ \mathbf{g}\in\mathbb{R}^N \mid \underbrace{|g_j - g_i| + m_i(\partial R_{i,j}(\mathbf{u}(\mathbf{t})))(g_j - g_i)}_{\text{relative order for }(i,j)} = 0 \right\}$$

- value of image u at site *i*: u_i
- set of interactions: \mathcal{W}
- Discrete Total Variation (DTV)

$$J(\mathbf{u}) = \sum_{(i,j)\in\mathcal{W}} R_{i,j}(\mathbf{u}) = \sum_{(i,j)\in\mathcal{W}} |u_j - u_i|$$

- Sub-differential of *F* at *x*
- $\partial F(\mathbf{x}) = \{ \mathbf{s} | \forall \mathbf{y}, \langle \mathbf{y} \mathbf{x}, \mathbf{s} \rangle + F(\mathbf{x}) \leq F(\mathbf{y}) \}$
- Minimal subgradient of *F* at *x*

 $m(\partial F(x)) =$ projection of 0 onto $\partial F(x)$

Discrete Total Variation Flow

• DTV-flow (Differential Inclusion)

 $\frac{d\mathbf{u}}{dt}(t) \in -\partial J(\mathbf{u}(t))$ on $(0, +\infty)$

Results

(a) Original image

(b) Noisy image

$\mathbf{u}(0) = \mathbf{f}$

- The slow solution of the differential inclusion yields the trajectory of DTV-flow
- Computed exactly using a network-flow approach
- It generates a sequence of images that simplfies more and more the original image as time evolves
- It presents a **loss of contrast**

 \Rightarrow Idea: get back the constrast while preserving the geometric information

Relative Order Preservation

- We want to keep the relative order of the level lines
- This constraint is maintained through:

(a) Our result

(b) Residual

- constraining relative order between two interacting pixels
- using Bregman distances

 $|u_j - u_i| + m_i(\partial R_{i,j}(\mathbf{v}))(u_j - u_i) = 0$

 \Rightarrow Geometric information maintained as a variational form

- Need to select the minimal subgradient:
 - otherwise relative order not necessarily satisfied
 - required for convergence properties of the approach

(a) TV minimizer

(b) Residual

Funding Research of J. Darbon has been supported by US Office of Naval Research ONR N000140710810.