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Abstract
We first introduce the notion of a completion.
Completions are inductive properties which
may be expressed in a declarative way and
which may be combined. We show that com-
pletions may be used for describing structures
or transformations which appear in combina-
torial topology. We present two completions,
〈CUP〉 and 〈CAP〉, in order to define, in an ax-
iomatic way, a remarkable collection of acyclic
complexes. We give few basic properties of
this collection. Then, we present a theorem
which shows the equivalence between this col-
lection and the collection made of all simply
contractible simplicial complexes.

Topological spaces
When considering finite sets, a topological
space is an Alexandroff space, i.e., a topolog-
ical space in which the intersection of any arbi-
trary family (not necessarily finite) of open sets
is open.
There is a correspondance between Alexan-
droff spaces and preorders (binary relations
that are reflexive and transitive).
A map between two preordered sets is mono-
tone (i.e., preserves the preorder relation) if and
only if it is a continuous map between the cor-
responding Alexandroff spaces.

Two objects X (left) and Y (right).

Let us consider the (simplicial) objects X and
Y . The object X is made of 6 vertices, 7 seg-
ments, and 1 triangle. A natural preorder ≤ be-
tween all these elements is the partial order cor-
responding to the relation of inclusion between
sets. Thus we have d ≤ a and a ≤ b.
We see that this is not possible to build a mono-
tone map f between X and Y such that f is the
identity on all elements of Y . For example, if
we take f(a) = c, f(b) = c, we have d ≤ a, but
we have not f(d) ≤ f(a).
Thus, in the context of this construction, the
classical axioms of topology fail to interpret
Y as a continuous retraction of X .

Simplicial complexes
A simplicial complex is a finite family X com-
posed of finite sets and such that, if x ∈ X and
y ⊆ x, then y ∈ X . We denote by S the collec-
tion of all simplicial complexes. Observe that
∅ ∈ S and {∅} ∈ S.
An element of X ∈ S is a face of X . A facet of X
is a face of X which is maximal for inclusion.
A complex A ∈ S is a cell if A = ∅ or if A has
precisely one non-empty facet.
We write C for the collection of all cells.
Let X ∈ S. We say that a face x ∈ X is free
for X if x is a proper face of exactly one face y
of X , such a pair (x, y) is said to be a free pair
for X . If (x, y) is a free pair for X , the complex
Y = X \ {x, y} is an elementary collapse of X .
Thus, the above object Y is an elementary col-
lapse of X ( (a, b) is a free pair).

Completions
In the sequel, the symbol S will denote an arbitrary collection. The symbol K will denote an arbi-
trary subcollection of S, thus we have K ⊆ S. Let 〈K〉 be a property which depends on K. We say
that a given collection X ⊆ S satisfies 〈K〉 if the property 〈K〉 is true for K = X.
Let K be a binary relation over 2S and 2S, thus K⊆ 2S× 2S. We say that K is a constructor (on S) if K

is finitary, which means that F is finite whenever (F,G) ∈ K. If K is a constructor on S, we denote
by 〈K〉 the following property which is the completion induced by K:
−> If F ⊆ K, then G ⊆ K whenever (F,G) ∈ K. 〈K〉
The following theorem is a consequence of a fixed point property:

Theorem: Let K be a constructor on S and let X ⊆ S. There exists, under the subset ordering, a unique
minimal collection which contains X and which satisfies 〈K〉.

We say that a property 〈K〉 is a completion (on S) if there exists a constructor K such that 〈K〉 is
precisely the completion induced by K.
If 〈K〉 is a completion and if X ⊆ S, we write 〈X, K〉 for the unique minimal collection which
contains X and which satisfies 〈K〉.
Let 〈K〉 and 〈Q〉 be two completions. Then 〈K〉 ∧ 〈Q〉 is a completion, the symbol ∧ standing for the
logical “and”.
If X ⊆ S, the notation 〈X, K, Q〉 stands for the smallest collection which contains X and which
satisfies 〈K〉 ∧ 〈Q〉.

Example: connectedness
The family composed of all connected simplicial complexes may be defined by means of comple-
tions on S. We define the completion 〈PATH〉 as follows.
−> If S ∈ K, then S ∪ C ∈ K whenever C ∈ C, and S ∩ C 6= {∅}. 〈PATH〉
We set Π = 〈∅, PATH〉. We say that a complex X ∈ S is connected if X ∈ Π.
Observe that C ⊆ Π since, for any C ∈ C, we have C ∩ ∅ = ∅ 6= {∅}.
It may be checked that this definition of a connected complex is equivalent to the classical definition
based on paths.
Now, let us define the completion 〈Υ〉 as follows.
−> If S, T ∈ K, then S ∪ T ∈ K whenever S ∩ T 6= {∅}. 〈Υ〉
It may be verified that we have Π = 〈C, Υ〉. This last result shows that 〈Υ〉 provides another way to
generate the collection of all complexes which are in Π.

The Cup/Cap completions
We define the two completions 〈CUP〉 and 〈CAP〉:
−> If S, T ∈ K, then S ∪ T ∈ K whenever S ∩ T ∈ K. 〈CUP〉
−> If S, T ∈ K, then S ∩ T ∈ K whenever S ∪ T ∈ K. 〈CAP〉
We set R = 〈C, CUP〉 and D = 〈C, CUP, CAP〉.
Each element of R is a ramification and each element of D is a dendrite.

The completions 〈CUP〉 and 〈CAP〉 may be seen as axioms which are used as “generators” for enu-
merating all the collection D: we start from C and we inductively generate all elements of D by
applying 〈CUP〉 and 〈CAP〉. In this sense, D may be seen as a ”dynamic structure”.

Now, let us introduce the two completions:
−> If S ∈ K, then T ∈ K whenever S is an elementary collapse of T . 〈COL〉
−> If T ∈ K, then S ∈ K whenever S is an elementary collapse of T . 〈−COL〉
We say that an element of 〈∅, COL〉 is collapsible and that an element of 〈∅, COL,−COL〉 is simply
contractible.
Remark: Any collapsible complex is a ramification and any ramification is a dendrite.

The Bing’s house X (left), and two objects Y (middle) and Z (right).

The Bing’s house with two rooms is a classical example of an object which is contractible but not
collapsible. We see that the two complexes Y and Z are such that X = Y ∪ Z. We also observe
that Y , Z, and Y ∩ Z are collapsible, and therefore ramifications. Thus, the Bing’s house X is a
ramification.

The following theorem shows that D corresponds to a remarkable collection of acyclic complexes.

Theorem: A simplicial complex is a dendrite if and only if it is simply contractible.

1



2


