Arc segmentation in linear time

Thanh Phuong Nguyen and Isabelle Debled-Rennesson Email : \{nguyentp,debled\}@loria.fr

LORIA Nancy, Campus Scientifique - BP 239, 54506 Vandœuvre-lès-Nancy Cedex, France

Contribution

We propose a linear algorithm based on discrete geometry approach for segmentation of a curve into digital arcs

Motivation

- Arc and circle are basic object in discrete geometry
- Arc and circle appear often in images
- Shape contains often digital arcs.
\Rightarrow The study of these primitives is important

Discrete circle

- Basic object in discrete geometry
- Based on discritization of a real circle

[Kim84]
 [Nakamura84]
 [Andres04]

Discrete line [Reveillès91]

A discrete line, noted as $D(a, b, \mu, \omega), a, b, \mu, \omega \in \mathbb{Z}^{2}$ is a set of points that verifies: $\mu \leq a x-b y<\mu+\omega$

Arc in the tangent space

Proposition 1:
Let $C=\left\{C_{i}\right\}_{i=0}^{n}$ be a polygon, $\alpha_{i}=$ $\angle\left(C_{i-1} C_{i}, C_{i} C_{i+1}\right)$. The length of $C_{i} C_{i+1}$ is l_{i}, for $i \in\{0, \ldots, n-1\}$. The vertices of C are on a real arc of radius R with center $O, \angle C_{i} O C_{i+1} \leq \frac{\pi}{4}$ for $i \in\{1, \ldots, n-1\}$. This results below is obtained.
$\frac{1}{R}<\frac{\alpha_{i}}{\frac{l_{i}+l_{i+1}}{2}}<\frac{1}{0.9742979 R}$

Interest of proposition 1

Example:

Deciding if a curve is an arc

1. Polygonalize the input digital curve by polygon P based on recognition of BS of width 1
2. Transform P to $T(P)$ in the tangent space
3. Determine the midpoint set $M p C=\left\{M_{i}\right\}_{i=1}^{n-1}$ of horizontal segment of $T(P)$
4. Verify if $M p C$ is a BS of width ϵ [Debled 06]

Arc segmentation

Main ideas:

1. Polygonalize the input curve
2. Transform the polygon to tangent space
3. Construct the curve of midpoints in the tangent space
4. Polygonalize the midpoint curve - Utilize parameter α to verify detected arcs

Study of quasi co-linear property

Convergence of radius of local circumcircles Proposition 2:
Let $C \xrightarrow{=}\left\{C_{i}\right\}_{i=0}^{n}$ be a polygon, $\alpha_{i}=$ $\angle\left(\overrightarrow{C_{i-1} C_{i}}, \overrightarrow{C_{i} C_{i+1}}\right)$. The length of $C_{i} C_{i+1}$ is l_{i}, for $i \in\{0, \ldots, n-1\}$. We denote O_{i}, R_{i}, H_{i} respectively the center and the radius of circumcirle that passes to 3 points C_{i-1}, C_{i}, C_{i+1}, the projection of O_{i} on $C_{i} C_{i+1}$, suppose that $R_{i}-O H_{i} \leq h$ for $i \in\{1, \ldots, n-1\}$. This results below is obtained. $R_{i} \alpha_{i} \geq \frac{l_{i-1}+l_{i}}{2} \geq R_{i} \alpha_{i}-0.3377 h \alpha_{i}$
Convergence of centers of local circumcircles Proposition 2:
Let us consider a sequence of points $\{C\}_{i=0}^{n}$. We denote O_{i}^{\prime} (resp. O_{i}) and R_{i} (resp. R_{i}) are the center and radius of circumcircle that passes to 3 points C_{0} (resp. C_{1}), C_{i}, C_{i+1}. There exist R and δ satisfied $R, \delta \in \mathcal{R}, 0 \leq R_{i}-R \leq \delta, i=1, \ldots, n-1$. Suppose that $\angle C_{k} C_{j} C_{j+1}>\frac{\pi}{2}$ for $k \in\{0,1\}, k<$ $j<n$. Therefore, we have this property $0 \leq R_{i}^{\prime}-$ $R \leq \delta, 0 \leq R_{i}^{\prime \prime}-R \leq \delta$, for $1 \leq i \leq n-1$.

Experimentation

