Arc segmentation in linear time Thanh Phuong Nguyen and Isabelle Debled-Rennesson Email: {nguyentp,debled}@loria.fr

LORIA Nancy, Campus Scientifique - BP 239, 54506 Vandœuvre-lès-Nancy Cedex, France

Contribution

We propose a linear algorithm based on discrete geometry approach for segmentation of a curve into digital arcs.

Motivation

- Arc and circle are basic object in discrete geometry
- Arc and circle appear often in images
- Shape contains often digital arcs.
- \Rightarrow The study of these primitives is important.

Discrete circle

Discrete line [Reveillès91]

A blurred segment ν is a set of points that satisfies – There exist a discrete line $D(a, b, \nu, \omega)$ that contains this set.

 $- \frac{\omega - 1}{max(|a|, |b|)} \le \nu$

Tagent space [Latecki00]

Input:

Suppose that $C = \{C_i\}_{i=0}^n$ is a polygonal curve

- $\alpha_i = \angle (C_{i-1}C_i, C_iC_{i+1})$
- l_i the length of segment C_iC_{i+1} .
- $\alpha_i > 0$ if C_{i+1} is on the right side of $\overline{C_{i-1}C_i}$, $\alpha_i < \infty$ 0 otherwise.

Output:

We consider the transformation that associates C to a polygon of \mathbb{R}^2 constituted by segments $T_{i2}T_{(i+1)1}, T_{(i+1)1}T_{(i+1)2}$ for *i* from 0 to n-1 with $-T_{02} = (0,0)$

-
$$T_{i1} = (T_{(i-1)2} \cdot x + l_{i-1}, T_{(i-1)2} \cdot y), 1 \le i \le n,$$

- $T_{i2} = (T_{i1} \cdot x, T_{i1} \cdot y + \alpha_i), 1 \le i \le n-1.$

Arc in the tangent space

Proposition 1:

Let $C = \{C_i\}_{i=0}^n$ be a polygon, $\alpha_i =$ $\angle(\overline{C_{i-1}C_i}, \overline{C_i}C_{i+1})$. The length of C_iC_{i+1} is l_i , for $i \in \{0, \ldots, n-1\}$. The vertices of C are on a real arc of radius *R* with center *O*, $\angle C_i O C_{i+1} \leq \frac{\pi}{4}$ for $i \in \{1, \ldots, n-1\}$. This results below is obtained.

$$\frac{1}{R} < \frac{\alpha_i}{\frac{l_i + l_{i+1}}{2}} < \frac{1}{0.9742979R}$$

iding if a curve is an arc

- Polygonalize the input digital curve by polygon *P* based on recognition of BS of width 1.
- Transform *P* to T(P) in the tangent space
- Determine the midpoint set $MpC = \{M_i\}_{i=1}^{n-1}$ of horizontal segment of T(P)
- Verify if MpC is a BS of width ϵ [Debled 06]

segmentation

ideas:

- Polygonalize the input curve
- Transform the polygon to tangent space
- Construct the curve of midpoints in the tangent space
- 4. Polygonalize the midpoint curve – Utilize parameter α to verify detected arcs

Study of quasi co-linear property

Proposition 2: Proposition 2:

Convergence of radius of local circumcircles

Let $C = \{C_i\}_{i=0}^n$ be a polygon, $\alpha_i =$ $\angle(\overline{C_{i-1}C_i}, \overline{C_iC_{i+1}})$. The length of C_iC_{i+1} is l_i , for $i \in \{0, \ldots, n-1\}$. We denote O_i , R_i , H_i respectively the center and the radius of circumcirle that passes to 3 points C_{i-1}, C_i, C_{i+1} , the projection of O_i on C_iC_{i+1} , suppose that $R_i - OH_i \leq h$ for $i \in \{1, \ldots, n-1\}$. This results below is obtained. $R_i \alpha_i \ge \frac{l_{i-1}+l_i}{2} \ge R_i \alpha_i - 0.3377h\alpha_i$

Convergence of centers of local circumcircles

Let us consider a sequence of points $\{C\}_{i=0}^n$. We denote O'_i (resp. O''_i) and R'_i (resp. R''_i) are the center and radius of circumcircle that passes to 3 points C_0 (resp. C_1), C_i , C_{i+1} . There exist R and δ satisfied $R, \delta \in \mathcal{R}, 0 \leq R_i - R \leq \delta, i = 1, \dots, n-1$. Suppose that $\angle C_k C_j C_{j+1} > \frac{\pi}{2}$ for $k \in \{0, 1\}, k < 0$ j < n. Therefore, we have this property $0 \le R'_i - 1$ $R \leq \delta, 0 \leq R''_i - R \leq \delta$, for $1 \leq i \leq n - 1$.

