

Challenging children handwriting recognition study

exploiting synthetic, mixed and real data

Sofiane Medjram, Véronique Eglin et Stéphane Bres Université de Lyon INSA Lyon, LIRIS, UMR5205, F-69621, France

In this paper, we investigate the behavior of a MDLSTM-RNN architecture to recognize challenging children handwriting in French language. The system is trained across compositions of synthetic adult handwriting and small collections of real children dictations gathered from first classes elementary school. The paper presents the results of investigations concerning handwriting recognition in a context of weak annotated dataset and synthetic images generation for data augmentation

Problematic

Handwritten Text Recognition (HTR) domain is still a challenging research field in a context where training data are at least weakly annotated if not missing. Children's handwriting recognition represents an example that

Supervi	n transfer				
Dataset	TL	Val CER%	Val WAR%	Test CER%	Test WAR%
cv	No	17.52%	62.74%	35.07%	49.45%

falls into this ontext of weakly annotated data, making deep learning based HTR systems ineffective.

MDLSTM-RNN Model

- Model fits well on IAM adults handwriting dataset
- CRNN decoder-decoder architecture based
- B-LSTM encoder based
- CTC decoder based
- 32 timesteps
- 256 encoding features

Manu	No	9.50%	77.08%	31.09%	54.68%
Manu	GAN	10.46%	74.47%	44.01%	41.66%
Manu	IAM	6.38%	82.81%	28.87%	56.25%
IAM	No	9.71%	78.50%	-	-

1	Automaton for dictation word						
	Dataset	TL V	/al CER%	Val WAR%	Test CER%	Test WAR%	
	GSV	No	0%	100%	34.93%	56.25%	
	GSVg	No	0%	100%	20.36%	74.57%	

Available Data

Collected from ScolEdit dataset children copies of CP classes

- 250 clean copies without guidlines
- 71 children handwriting s
- 3832 detected words
- Annotated to IAM format

		is mult preven			
6	ilishant on delat le cette histoire	" have perles and office	_		
1	Liontrent trange.	and planers, J'a are	a ana ar	este qui il	ad bi Un
Ř	we de branchidest.	nume at h rullin me que	la	nue tela	la
14 20	de un quir descuit il pares	wars with grand persons	iou cho	Anoral input	pela
	the gen of an and some in the second and the	o horse gove enfants.	nai No	denie	de d
	preses torres and an another to well part	wine la	mile	see la	he
	de mon delloreno	te toot d'	formú un cou	Ji ji	lat nu

Empirical Study Strategies

Strategy I:

Supervised validation and domain transfer

Strategy II:

- Automaton for dictation word Strategy III:
- Large lexicon training with transfer

Large lexicon training with transfer

Dataset	TL	Val CER%	Val WAR%	Test CER%	Test WAR%
GLV	No	1.16%	95.70%	82.31%	3.12%
GLVch	No	7.18%	80.46%	8.22%	74.47%
GLVch	IAM	5.47%	85.67%	5.52%	84.11%

Conclusions

- MDLSTM-RNN model adapts well to Children handwriting recognition
- Synthetic data and augmentation are essential to improve performances
- HTR Performances are significant where validation and test sets are well selected

When the amount of data is small and the complexity of writing

important, it is convenient to choose carefully training and validation sets for a better generalization and model convergence.

GSV: GAN small vocabulary GSVg: GSV augmented 3 Adult styles 6 words, 320 repetitions

GLV: GAN large vocabulary GLVch: GLV with real children 3 Adult styles 1736 unique words each

Datasets for transfert learning

