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Problem Description

• Many (historical) documents available due to
mass digitization

• Extraction of meta data is important for historical
analysis

Goal
• Find recipient lines in

Nuremberg Letterbooks
(areas marked in orange)

Problem
• Layout (visual) analysis not

robust enough for different
books or complicated cases

Idea
• Exploit linguistic patterns

and combine approaches to
improve results

Methodology

Joint Transcriber and Recipient Line Classifier
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• Encode classification information into end-of-sequence token of HTR [1]

Visual models
• U-Net [2] & Attention U-Net [3]
• No linguistic feedback → only reliant on layout information

Linguistic model
1. Transcribe text lines with handwritten text recognition (HTR) model
2. Classify recipient lines with n-gram-like feature extraction [4]

Combined Approach
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Predictions

• Combine different modalities from visual and linguistic models
• Each method contributes equally to the combined output
• Note: HTR needs text lines as input and not whole pages

Evaluation

Test cases
• Test 1: same books as in training & validation
• Test 2: unseen book, without curated text line

segmentation

Number of pages
Book 2 Book 3 Book 4 Total

Training – 375 201 576
Validation – 53 29 82
Test 1 – 102 54 156
Test 2 48 – – 48
Total 48 530 284 862

Results
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Conclusion

• For both test cases the combination of all models works the best
(F1 scores: 0.93 (Test 1), 0.80 (Test 2))

• Joint handwriting and recipient line recognition model has a decent
performance combined with insights of the decision making

• Project partners are using approach in a semi-automatic way

Outlook

• Improve results with weighting predictions of models according to
their performance on validation set

• Evaluate joint model on named entity recognition tasks
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