

AttentionHTR: Handwritten Text Recognition based on Attention EncoderDecoder Networks

Introduction:

Handwritten text possesses high variability due to different writing styles, languages, and scripts. Training an accurate and robust system calls for data-efficient approaches due to the unavailability of enough annotated multi-writer text.

Methods:

1. Four-stage framework:

- Transformation: TPS

- Feature extraction: ResNet

Sequence modeling: BiLSTM

- Prediction: LSTM with attention

- 2. Transfer learning from Scene Text Recognition (STR) to Handwritten Text Recognition (HTR).
- **3. Novel multi-writer dataset Imgur5K** previously not used for HTR.
- 4. Error analysis.

Dmitrijs Kass: dmitrijs.kass@it.uu.se Department of IT, Uppsala University, Sweden

Ekta Vats: ekta.vats@abm.uu.se Centre for Digital Humanities Uppsala, Department of ALM, Uppsala University, Sweden

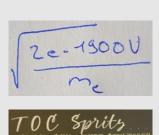
Overcome training data scarcity on Handwritten Text Recognition tasks and train a general-purpose model

Transfer learning

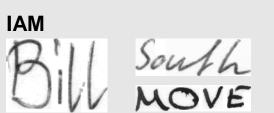
14.4M of **synthetic** training data.

230K of **real** handwritten training data for finetuning.

MJSynth



SynthText



Results

- 1. Error rates are comparable with the state-of-the-art.
- 2. The final model is trained on handwriting from thousands of authors, with varying image conditions, in order to aid generalisation in the real-world.
- 3. Model accuracy can be further strengthened by adding more datasets to the pipeline.

	Test-CER			Test-WER		
Character set	Imgur5K	IAM	Both	Imgur5K	IAM	Both
Ours, case-insensitive	6.46^a	4.30^{b}	5.96^{c}	13.58^{a}	12.82^{b}	13.89^{c}
Ours, case-sensitive	9.47^{a}	6.50^{b}	8.59^{c}	20.45^{a}	15.40^{b}	18.97^{c}
Kang <i>et al.</i> [12]	-	6.88	-	-	17.45	-
Bluche et al. [3]	-	12.60	-	-	-	-
Sueiras et al. [20]	-	8.80	-	-	23.80	-
Chowdhury et al. [5]	-	8.1	-	-	-	-
Johannes et al. [15]	-	5.24	-	-	-	-
Kang et al. $[11]^{\tilde{d}}$	-	5.79	-	-	15.91	-
Fine-tuning approaches: a IAM \rightarrow Imgur5K; b Imgur5K \rightarrow IAM; c Imgur5K+IAM.						

Design a prioritized test error reduction strategy through error analysis

Error analysis

1. Test error decomposition ⇒ focus on variance



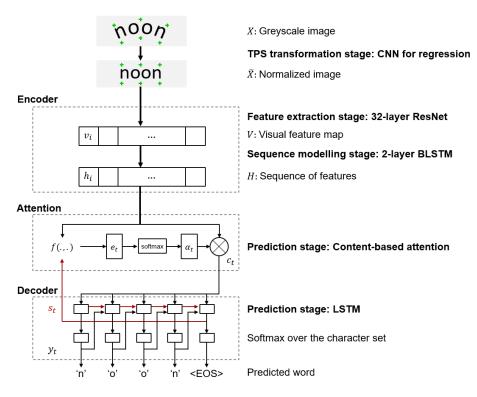
- 2. Character-level error analysis ⇒ tailor-made representation of characters.
- 3. Visual analysis of errors by a human ⇒ tailor-made data augmentation

Prioritized strategy:

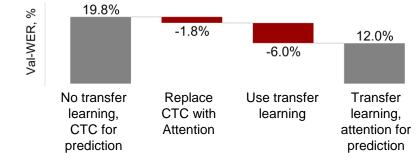
- 1. Variance reduction:
 - Replace early stopping with norm penalty or dropout regularization.
 - Data augmentation tailored to the level of visual effects and characters.
 - Other annotated multi-writer datasets.
 - Language modeling.
- 2. Bias reduction:
 - Run training longer.
- 3. Validation/testing set mismatch.

Code and pretrained models:

Model architecture

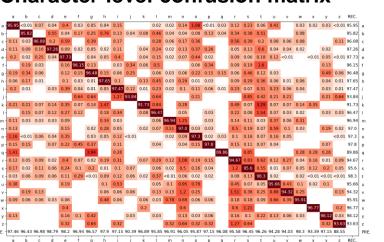


Ablation study on the IAM dataset



Visual analysis of errors

Character-level confusion matrix



Character-level F1 scores

