

PRHLI

Evaluation of Named Entity Recognition in handwritten documents

David Villanova-Aparisi¹, Carlos-D. Martínez-Hinarejos¹, Verónica Romero², Moisés Pastor-Gadea¹ PRHLT Research Center, Universitat Politècnica de València, Camí de Vera, s/n, València 46021, Spain ² Departament d'Informàtica, Universitat de València, València 46010, Spain

Main contributions

- Proposal of two evaluation metrics for the combined Handwritten Text Recognition (HTR) and Named Entity Recognition (NER) task
- Application of syntactical constraints to improve the performance of a coupled model

Previous work

- Coupled approaches avoid error propagation in several tasks
- Usage of Convolutional-Recurrent Neural Networks (CRNN)
- Previous experimentation on the chosen dataset

Evaluation metrics

Classic Measures

- CER and WER:
 - Tags are considered as characters or words
 - Impossible to evaluate the syntactical correctness
- Precision, Recall and F1-Score:
 - Specific focus on Named Entities
 - Problems with multiple appearances and order constraints
 - Cannot adjust the strictness of the metric

Entity CER and Entity WER

Edit distance with operation costs:

$$I(i,j) = 1$$

$$D(i,j) = 1$$

$$S_{CER}(i,j) = \begin{cases} 2 & \text{if } E_i \neq E_j \\ 2 \cdot CER(T_i, T_j) & \text{otherwise} \end{cases}$$

$$S_{WER}(i,j) = \begin{cases} 2 & \text{if } E_i \neq E_j \\ 2 \cdot WER(T_i, T_j) & \text{otherwise} \end{cases}$$

Main benefits:

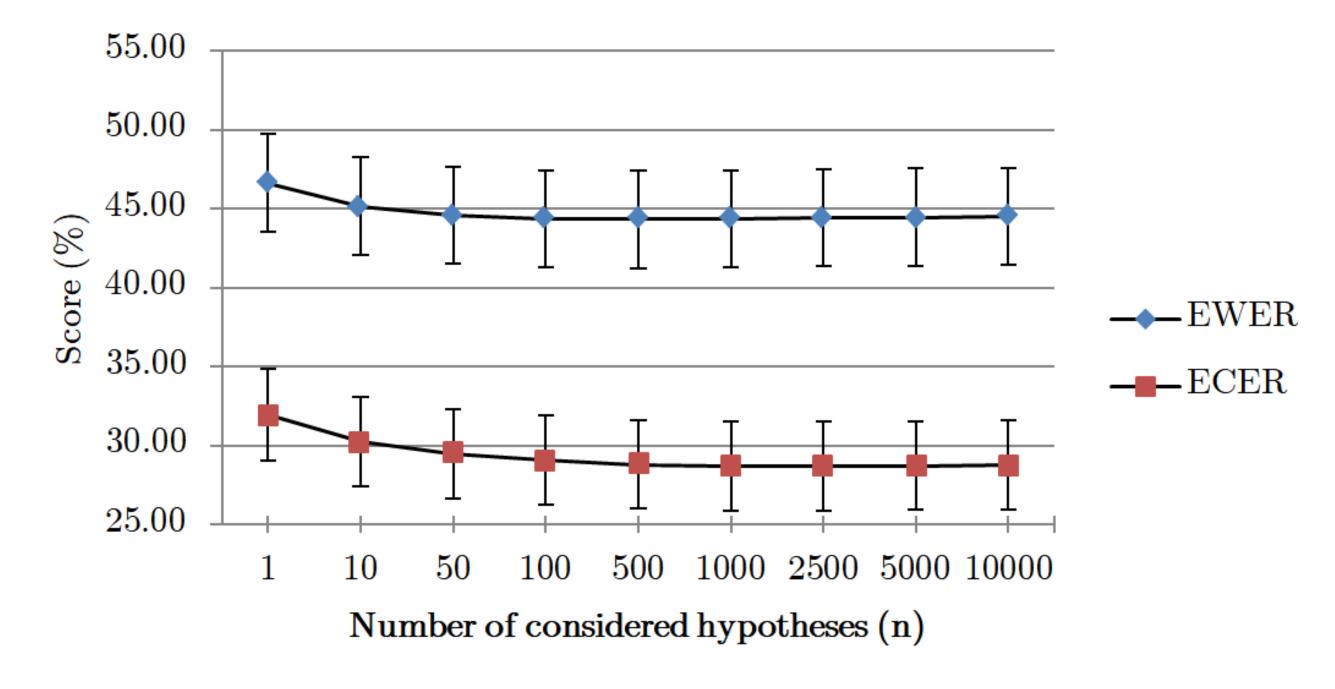
- Specific focus on Named Entities
- Consideration of order constraints
- Deals with multiple appearances
- The strictness can be adjusted

Experimental method

Dataset:

- 499 letters written by different authors
- Three languages: Latin, Czech and German
- Types of Named Entities: Person, Place and Date
- Parenthesized notation and nested Named Entities
- Data partitioning:
 - Training set: 398 letters (80%) - Validation set: 51 letters (10%)
 - Test set: 50 letters (10%)

Employed architecture:


- Optical Model: CRNN implemented and trained with PyLaia
- Language Model: Character 8-gram estimated with SRILM
- Combination of both models via Kaldi
- Decoding: Obtain the first syntactically correct hypothesis among the *n*-best outputs

Obtained results

Metric	Boroş,	Combined	Combined
	Emanuela	model	model
	et al. (no	(1-best,	(2500-best,
	nested NEs)	nested NEs)	nested NEs)
CER (%)	8.00 ±1.68	9.23 ± 1.80	9.24 ± 1.80
WER (%)	26.80 ±2.75	28.20 ±2.79	28.14 ± 2.79
Precision (%)	49.25 ±3.10	43.14 ±3.07	40.05 ± 3.04
Recall (%)	37.08 ± 3.00	37.58 ± 3.00	39.97 ±3.04
F1 (%)	42.30 ±3.07	40.17 ±3.04	40.01 ± 3.04
ECER (%)	34.48 ± 2.95	31.94 ±2.89	28.69 ±2.81
EWER (%)	52.79 ±3.10	46.62 ±3.10	44.42 ±3.08

Evolution of EWER / ECER with n

Conclusions

- Two novel metrics for the combined task based on edit distance
- Increase of the number of syntactically correct outputs
- No statistically significant improvements over our baseline system

Future work

- Consideration of Named Entites spanning over several lines
- Paragraph level decoding
- Apply our approach in different corpora

Acknowledgements

This work was supported by Grant RTI2018-095645-B-C22 funded by MCIN/AEI/ 10.13039/501100011033, by "ERDF A way of making Europe", by Grant ACIF/2021/436 funded by Generalitat Valenciana, by Generalitat Valenciana under the project GV/2021/072 and by Generalitat Valenciana under project DeepPattern (PROMETEO/2019/121).